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J. Phys.: Condens. Matter 1 (1989) 9085-9100. Printed in the UK 

On the theory of a(a’)-p phase transitions of ordering 
type in niobium hydride 

V G Vakst and V I  Zinenkot 
t I V Kurchatov Institute of Atomic Energy. Moscow 123182, USSR 
$ L V Kirensky Institute of Physics, Krasnoyarsk 660036, USSR 

Received 4 October 1988 

Abstract. Earlier methods for describing the statistical properties of hydrogen in the Nb- 
group metals are used to study the (Y((Y’ ) -~ phase transitions in NbH, and (Y((Y’)-~ in TaH, 
and VD,. We show that the observed broad range of concentrational stability for the ordered 
/3 or 6 phase in these alloys can hardly be obtained in models with pairwise concentration- 
independent H-H interactions. However, this can naturally be explained if the con- 
centrational anomalies in thermodynamic properties noted previously for the (Y phase in 
NbH, are properly taken into account. The model of H-H interactions discussed earlier, 
complemented by two phenomenological mean-field parameters for the ordered /3 phase, 
enables us to describe the peculiar features of the experimental (Y- (Y ‘ -~  phase diagram in 
NbH,. The calculated values of the order parameters, transition entropy and chemical 
potential of hydrogen in the p phase agree fairly well with available data. We predict 
anomalies in the thermodynamic and elastic properties of TaH, and VD, analogous to those 
observed in NbH,. 

1. Introduction 

Investigations of thermodynamic properties and phase transitions (PT) of hydrogen in 
hydrides of the transition metals attract much attention. This is due to practical interest in 
the hydrides as well as to possible uses of these relatively simple systems for investigating 
general features of interactions and PT in interstitial alloys. Hydrides of the niobium- 
group metals are some of the most thoroughly studied; they have complex phase dia- 
grams with a number of PT (Shober and Wenzl 1978, Somenkov and Shilstein 1980, 
Kobler and Welter 1982). Understanding the peculiar features of these diagrams can 
provide significant information on the nature and character of H-H interactions in 
metals. It is natural to start the consideration of ordered phases with the MX or Me-H 
structure, denoted as the p phase in NbH, (or NbD,) and as the 6 phase in TaH, (or 
TaD,) and VD, (see figure 1 and Shober and Wenzl(l978)). The structural basis for this 
phase is also characteristic for other H orderings in BCC hydrides. It is the main high- 
temperature ordered phase in the NbH,-type hydrides at 0.7 < x < 1.1. In addition, the 
cause for such a broad range of concentrational stability (the Me-H ‘lattice crystal’ is 
stable even at 30% of vacancies in the hydrogen sublattice) appears to be a significant 
qualitative problem for theory. 

Theoretical models of the PT in NbH,-type alloys were discussed by a number of 
authors, e.g. Horner and Wagner (1974), Futran et af (1982) and Hall et a1 (1987). 
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Figure 1. Phase diagram of the NbH, system. Experiments: full curve, Shober and Wenzl 
(1978); full circles, Welter and Schondube (1983). Calculations using the models described 
at the end of 8 3: chain curve, model F; broken curve, model G. 

However, most attention had been paid to the a-a’ PT of the lattice gas-lattice liquid 
type. Calculations of the phase equilibrium curve Te,,(x) with the Monte Carlo method 
using the model with pairwise H-H interactions VHH equal to the sum of the stress- 
induced (‘elastic’) term VSi and the strong repulsion (blocking) in the first three coor- 
dination spheres V,, yielded a fair description of the observed T,,.(x) in NbH, (Horner 
and Wagner 1974, Futran et a1 1982). PT to the ordered @ and E phases in NbH, were 
discussed by Hall et a1 (1987) only in the framework of a simplified model substituting 
an auxiliary tetragonal lattice for the real one of the interstitial sites in BCC Nb. For this 
model Hall et a1 concluded that the mentioned interactions VHH = VSi + V,, cannot 
describe the PT corresponding to the /3 and E orderings in NbH, and additional long- 
range and non-pairwise interactions should be employed. 

To calculate the statistical properties of alloys with strong inter-atomic interactions, 
such as hydrides, an analytic cluster field method (CFM) had been suggested in the papers 
of Vaks and Orlov (1986,1988), Vaks and Zein (1987) and Vaks et a1 (1984, 1988a, b), 
to be referred to as I ,  11,111, IV, V and VI, respectively. The CFM is a simplified version 
of the known cluster variation method (Kikuchi 1951, De  Fontaine 1979) which enables 
us adequately to take into account the strong long-range interactions, too. The lowest 
approximation of the CFM (that of the pair clusters) corresponds to the Richards (1983) 
method, In papers I-VI the CFM has been used for the consideration of a number of 
properties of NbH,-type hydrides: the a-a‘ PT (11, VI); the symmetry of the ordered 
phases (I, 111); short-range order effects (IV, V); thermodynamic properties in the 
disordered (Y phase (11); etc. In particular, estimates of the H-H interaction parameters 
made in I1 from the experimental data of Kuji and Oates (1984a) revealed a sharp 
concentration dependence of the partial enthalpy of hydrogen near x = x, = 0.6, which 
appears to reflect a significant change of the electronic state of hydrogen in NbH, at this 
x. This illustrates the importance of band-structure effects in those alloys and agrees 
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qualitatively with the considerations of Hall et a1 (1987) on the significance of electronic 
and non-pairwise interactions in NbH,. 

In the present paper we use the methods and results of works I-VI to investigate the 
MX-type ordering in NbH,, TaH, and VD,. We pay most attention to the a( a’)-@ PT 
in NbH,, since it is the best studied experimentally. Comparison of the calculated phase 
equilibrium curves T,@(x)  with the observed ones confirms the previous estimates of the 
H-H interaction parameters (11) and enables us to generalise them to the /3 phase. We 
show, in particular, that the noted wide range of the /3-phase stability noted is naturally 
explained by the sharp increase of y ( x )  and a y / a x  in the aphase atx b 0.6. An analogous 
increase of y ( x )  and a y / a x  in TaH, and VD, is predicted. The concentration and 
temperature dependences for a number of characteristics of the /3 phase are calculated: 
the order parameters 5 and p (defined in 111), the chemical potential y(x, T ) ,  the entropy 
of the PT A S ( x ) ,  etc. The results agree satisfactorily with the available data. We also 
predict an anomalous softening for one of the shear constants in the a phase of VD, near 
the transition temperature T , ( x ) .  On the whole the present study again reveals the 
importance of the non-pairwise, electronic effects in the hydrides and shows that all the 
main features of the PT under consideration can be understood in the framework of the 
concepts and models discussed in works I-VI. 

2. Basic relations and methods of calculation 

The model and calculation methods used are described in papers I and 11. Let us give 
the main relations. In the hydrides considered the hydrogen atoms occupy tetrahedral 
interstitial sites in the BCC lattice of a metal, which form six equivalent sublattices 
denoted by indexp = 1 , 2 , 3 ,  1 , 2 , 3  with the following basis vectors pp: 

- - -  

p1 = tal  + tu,  p2 = 4a2 + la3 p3 = au, + if21 Pk = -Pk (1) 
where a, is the translation vector along the main crystal axis i by the BCC lattice constant 
a = lull. In the disordered a phase all the sites are equivalent but in the MX phase there 
are three non-equivalent types of sites, which are denoted by index A = a, b or a (see 
figure 2). The occupation numbers np(R)  for sublattices p in the BCC cell with centre R 
are related to the occupation numbers nA (for sites of type A) as follows: 

n3(R)  = nj(R) = i(n,  + n b )  + t (n ,  - n b )  exp(ikl - R )  

n1 = n2 = n i  = ni = n ,  

where k l  = (1 ,1 ,0 )n /a .  Equations (2)  correspond to the presence in the MX phase of 
two concentration waves (Khachaturian 1974) with order parameters 5 and p connected 
with ni as 

n,  = c(1 + 25 + 3p) n b  = c(1 + 25 - 3p) n ,  = c(1 - 5)  (3) 
where c = x / 6  is the average occupation of sites in the MeH, alloy. For perfect ordering 
we have E = p = 1, n, = x ,  nb = n, = 0. 

Following 11, we write the free energy Fof the alloy (per Me atom) and the chemical 
potential y of hydrogen in the form 
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Figure 2. MX ordering in the BCC hydrides (see 
e.g. Shober and Wenzl 1978); for clarity, metal 
atoms are not shown. The large circles are tetra- 
hedral interstitial sites in sublattices 3 and 5;  the 
small circles are those in sublattices 1, i , 2  and 2. 
The dotted and broken lines link the sites in the 
z = 0 and z = I n  planes, respectively; the indices 
a and b in or without parentheses are assigned to 
sites in the z = ia or z = $U planes, respectively, 
where a is the BCC lattice constant. In the case 
of perfect ordering, only the sites of type a are 

aibl 

W 
a l b l  

occupied. The structure is periodic in the ( k l ,  
*l, 0) directions. 

Here Fconf is the configurational contribution to F corresponding to energy and entropy 
of various distributions of protons over sites; ECi is the configuration-independent term 
(including, in particular, the ‘configurationally averaged’ part of the band-structure 
energy); and Fph is the phonon contribution. As in 11, functions E,, and Fph are estimated 
from the experimental data (Kuji and Oates 1984a, b, Shapiro et al 1981) and Fconf is 
calculated as described in I and 11. Interactions V,, = V(r )  are supposed to be pairwise 
and Fconf has the form 

Here /I = 1/T, N is the total number of Me atoms, the operator A, being equal to 0 and 
1 describes the occupation of a site r by a proton and the sum in ( 5 a )  is taken over all the 
sets of occupation numbers A,. 

In the cluster approximation denoted in I as 8s approximation the thermodynamic 
contributions of interactions V(r,) = V,in the first, second and third coordination spheres 
are described with the use of eight-site and three-site clusters and those of interactions 
VI with i 3 4 with pair clusters. In the /3 phase the free energy Fconf = Fp and chemical 
potentials of sublattices ,U$ have the form 

F p  = F i  + FFf + F b  (6a) 

Here vA is the number of sites of type A per Me atom (v, = v b  = 1, v, = 4); Fb and ,U:, 
are the contributions of the short-range interactions V I ,  V 2 ,  V3  and of terms with the 
configurational entropy; Fp”‘ and ,upf are the contributions of the rest of the constants 
VLp4 taken in the mean-field approximation; and F;  and ,U: are the ‘correlative’ con- 
tributions of Vi from the fourth to the eighteenth coordination spheres described in the 
pair cluster approximation (I). 

In calculating F ;  and p i ,  the interactions VI and V 2  are supposed to be repulsive 
and very large (‘blocking’), V I ,  V2  9 T ,  while V 3  is finite (11). Then the explicit 
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expressions for the short-range contributions F S ,  ps and Qs to F p ,  ,U$ and the thermo- 
dynamic potential S2 = F - px in terms of the sublattice occupation numbers nA are as 
follows (I): 

F ;  = Q S  + vnpIni (7a) 
i 

and pS, is obtained from p ;  by interchanging indices a t) b. In equations (7a-d) we use 
the notation 

nl, k = n,  + n, + . . . + nk PI ,  k = l - n ~ l  k e3 = exp(-BV3> 

4n a 4n n 2n ab c =  
RI + 4 +  R2 + 4 -  

5, = V =  
Ra + Paanaa 

where yi are the mean-field constants discussed in V. 
The correlative contribution Fb or p i  are defined as the differences between con- 

tributions of interactions Vi to Fp or p2* calculated in the pair cluster approximation and 
that in the mean-field one: 

18 18 

RtJp = [ ( I  + nnfr + npfr)' - 4nAnpfLl + f l ) l ' "  ( 104  
and m;P in (9) is the number of sites of type p in the ith coordination sphere of site A; 
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Table 1. Coordination numbers m;” in (9) and values of interaction constants V,  = V ( r , )  
used for NbH,. 

i 4rJa m, m y  mfb my” m:” V,(K) 

1 101 4 0  0 4 2  X 

2 002 2 0  2 0 2  5) 

3 211 8 0  0 8 4  800 
4 220 4 2  2 0 4  33 
5 301 8 0  0 8 4  - 127 
6 222 8 4  4 0 8  -224 
7 123 16 0 0 16 8 - 130 
8a 004 2 2  0 0 2  -483 
8b 400 4 0  4 0 4  83 
9a 033 4 0  0 4 2  259 
9b 141 8 0  0 8 4  300 

10b 042 4 4  0 0 4  552 

12 224 8 4  4 0 8  25 
13a 501 8 0  0 8 4  41 
13b 413 16 0 0 16 8 47 
15 251 16 0 0 16 8 84 
16a 404 8 0  8 0 8  86 

17a 053 8 0  0 8 4  87 
17b 433 8 0  0 8 4  -14 
18a 006 2 0  2 0 2  -110 
18b 442 8 0  8 0 8  -95 

10a 402 4 4  0 0 4  -182 

11 323 8 0  0 8 4  -114 

16b 440 4 4  0 0 4  -56 

mrp obeys the relation v,m;/’ = vPmfA.  The values of m,da = mFb, myb, m;@ = m:*, 
mp” and the total m, = m;a + mtb + m;@ values are presented in table 1. 

The H-H interaction constants V,  were estimated in I1 in the model (denoted ‘model 
A’) in which VHH is the sum of the stress-induced term V,,, the anharmonic repulsion 
in the first three coordination spheres V,, and the screened Coulomb (‘electronic’) 
interaction of protons V,. The values of V, in that model are presented in table 1. The 
corresponding mean-field constants y, in (8) were calculated in V and are (in K) 

- 13 320 yg = -2580 y p  = -220. (11) 
As discussed in 11, this simple model with pairwise V,  for the cy phase of NbH, 

gives a fair description of both the cy-&’ phase diagram and the observed temperature 
dependences of the ‘excess’ chemical potential 

PE = P ( X ,  T )  - ,P,d(X, T )  (12) 
where pld is the chemical potential for the ideal solution (Kuji and Oates 1984a). 
However, to describe the concentration dependences, in particular the sharp increase 
of p and ap/dx atx B 0.6, one must take into consideration the mentioned configuration- 
independent (or ‘band’) contribution E,,(x) in (4). The total temperature-independent 
contribution hE to pE, 

h3x) = P 3 . 4  + P m f ( X >  (13) 
has been estimated from the experiments of Kuji and Oates (1984a) and is given by 
formula (29b) and figure 2 in 11. This hE(x) will be denoted as h,(x). For largerx ~ > 0.83, 
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formula (29b) and figure 2 in 11. This hE(x) will be denoted as h,(x). For largerx > 0.83, 
which were not investigated by Kuji and Oates (1984a), the values of ht(x)  will be 
estimated below from the analogous data of Kuji and Oates (1984b) for the /3 phase. 

Lastly, in treating the phonon contribution Fph in (4), we suppose that the changes 
of the phonon spectra at the af-P PT are small (Shapiro et a1 1981). Therefore, we 
describe F p h  by the same expressions as for the a phase. They are given by formulae 
(4) and (2b) in I1 and have been obtained by an interpolation of the concentration 
dependence of the phonon spectra observed in the a phase. 

The equilibrium values of the order parameters and p in the /3 phase at given Tand 
x can be found from the condition of equality of the sublattice chemical potentials pa = 
& = p, or from the equivalent condition of minimum of the free energy Fp( T,  x, E ,  p )  
over f and p .  The latter turns out to be more convenient for calculations. Thus we find 
equilibrium = gm and p = pm, minimising in the range 0 G 5,  p < 1 on a mesh with 
steps Af s 0.01 and Ap < 0.01. 

The curves of the phase equilibrium a-/3 (or a’-/3) are obtained from the equations 

pn(T,xa)  = ~ t ( T , x p ,  gm3 P m )  

Qm(T,xn) = Qp(T,xp, E m ,  p m > *  

(14a) 

(14b) 

Here index a or /3 indicates that p or 52 is calculated for the a or /3 phase, Q, = F, - x,p’,  
x, = x,( T )  and xp = xp( T )  are the solutions of equations (14) which determine the left 
and right boundary of the two-phase region a + /3 in the (x, r )  phase diagram. The 
phase equilibrium curve a-a’ (of the gas-liquid type) is determined by equation (13) 
on replacing /3 + a’ and &,, = pm = 0. 

3. CY- - (Y ‘ - -~  phase diagrams and the chemical potential of hydrogen in the j3 phase 

On discussing the calculated a-af-/3 phase diagrams, we first note that direct use of 
model A described above with the Vi values from table 1 and y, from equations (11) 
leads to the wrong description of the symmetry of the ordered p phase. Instead of the 
MX phase with order parameters g # 0 ,  p f 0, a partly ordered phase with E #  0, 
p = 0 (called the g phase in I11 and below) emerges and remains stable down to rather 
low T - 50 K. The analysis in V has shown that such suppression of the concentration 
wave (cw) p ,  i.e. a large value of the stiffness S, = a2F/ap2 for this cw, is mainly due to 
an anomalous smallness of the mean-field constant y, in (11) in the given model, while 
the short-range and correlative contributions to S,  have the same order of magnitude as 
those for the soft cw f (the correlative terms being small). Such a smallness of y, is 
characteristic of both the stress-induced interaction V,, and the electronic one V,. Since 
V,, is estimated from the experimental data (11), the error is evidently connected with V,. 
It shows that our simple model for V,  with linear screening of protons in a homogeneous 
electron liquid is insufficient for the description of the cw p characteristics, and that 
the disregarded effects of the band structure, of the inhomogeneous screening by d- 
electrons, of the higher orders in the electron-proton interaction, etc., are important. 
At the same time, the stiffness for the cw (which is dominated by the stress-induced 
interaction Vsi; see V) seems to be estimated realistically in our model. This is implied 
by a reasonable agreement of our calculated ‘ordering spinodals’ T&x) (the temperatures 
at which the disordered a phase becomes unstable with respect to the creation of the 
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cw) with that estimated from the experiments (see V and figure 8 of this paper) as well 
as by the estimates of y; from the experimental phase diagram discussed below. 

In connection with the above, we suppose that in describing the main features of the 
a-@ PT, we can simulate all the disregarded effects by a simple change of the mean- 
field constants yp and y s ,  compared to the model estimate (11), while the rest of the 
contributions F b ,  F$  in (6) can still be taken from the model calculations. This can be 
understood, for example, as an addition to Fp and pp of the ordering-dependent band- 
structure contributions analogous to the configuration-independent terms E,, and pc1 in 
(4) and (12). The values of yp and y;  will be estimated from fitting to the observed phase 
diagram, while the comparison with experiments of the calculated temperature and 
concentration dependences for various characteristics will allow us to appreciate the 
adequacy of the model. 

The phase diagrams calculated with various yp,  y ;  and hE(x) in (13) are presented in 
figures 3(a)-(d). Let us discuss these results. Figure 3(a) illustrates the sensitivity of the 
phase diagram to the yL values. The curves presented correspond to lypl < J y t /  and 
yp - ys .  If the difference A y  = 1 yEl - 1 ypl increases, the above-mentioned phase 
emerges even at relatively low Ay. For example, the calculations (not presented in figure 
3) show that at y s  = -2400 K, yp = - 1700 K the phase appears already at T = 390 K, 
xp = 0.56. Figures 3(a) and 1 also show that at y ;  = y j  = -2200K, y p  = y ;  = 
-1850 K the calculated triple point x, = 0.52, Tt = 370 K is close to the experimental 
one, while for y E  = y i  = -2300 K, y p  = y b  = -2200 K the values of xt and T, are 
displaced from it. However, the models with y L  = y f  are better at describing the exper- 
imental values of the transition entropy AS; see figure 7. Thus, in the estimates below 
we use both y ,  = y !  and y I  = y : .  

Figure 3(b)  illustrates an important result of the effect of the configuration-inde- 
pendent terms E,, and p,, in (4) and (13) on the PT. It shows that, when these terms are 
absent and the H-H interactions are purely pairwise, the concentration interval of the 
p phase stability near the stoichiometric value x = 1 is very narrow: for all the yL and T 
values considered, x( T )  varies from 0.975 to 0.995; in figure 3(b) they are equal to unity 
within the accuracy of the drawing. This narrowness of the stability for the ordered 
phase, i.e. for the ‘lattice crystal’, corresponds to the well known smallness of the 
equilibrium concentration of vacancies in the actual crystals and is apparently charac- 
teristic of all the models of alloys with purely pairwise interactions of interstitial atoms. 
At the same time, comparison of figures 3(a) and (b )  shows that the observed large 
number of ‘vacancies’ in the @ phase of NbH, is naturally explained when the non- 
pairwise contribution E&) (estimated from the experiments of Kuji and Oates (1984a)) 
is taken into account. 

To elucidate this and other features of the phase diagrams of the NbH,-type systems, 
we consider relations between thermodynamic potentials of the (Y’ and /3 phases on their 
phase equilibrium curves. Differentiating equation (14b) over T and using (14a) we 
obtain 

Here Si = S(xi ,  T) = -aF,/aT is the entropy per Me atom in phase i on the phase 
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X X 

Figure 3. The (U-@'+ phase diagram for NbH, for different forms of h E(x)  in (13) and vahes  
of yE, y p  in (8) (in K). ( U )  Here hE(x) denotes h,(x) determined from experiments of Kuji 
and Oates (1984a) in 11. The full curve corresponds to ya = y i  = -2200, y p  = y ;  = 
-1850; the chain curve to yz = -2300, yp = -2200; the broken curve to y; = 1900, yp  = 
-1800. (b)Here hE(x)  stands for themean-fieldexpressionpmf(x) = y s ,  ye  = -13320. The 
full curve corresponds to y E  = yg, yp = y ; ;  the chain curve to yE = -1900, yp = -1800; the 
broken curve toys  = y p  = -1600. (c) Here y: = y f ,  y ,  = y ; ,  h , f ( x )  is taken from (16). The 
full curve corresponds to A = lo4 in (16); the chain curve to A = 5 X lo4; the broken curve 
to A = 7 x lo4. (d )  Here h ; ( x )  is taken from (18); y,(x) from (19) with d, = 0, yE = 
y f ,  y p  = y;, b, = b, = b. The full curve corresponds to b from (19) being 2000; the chain 
curve to b = 3000; the broken curve to b = 4000. 

equilibrium curve x,(T) or T,(x). Equation (15) enables us to make qualitative con- 
clusions on peculiarities of the phase diagrams in the case when p r  and dp,/dx vary 
sharply with x, as occurs in NbH, at x b 0.6. According to (4) and (6), the entropy S,  is 
the sum of the short-range. correlative and phonon contributions. Each of them varies 
slowly with x at x - xEt or x - xp within any reasonable theoretical model, as well as in 
the estimates from experiments (11, Kuji and Oates 1984a). The same is also true for 
terms d,ul/d T in (15). Therefore, high values of d,ur/dx in (15) must be compensated by 
a smallness of the predicted (xp - x,,)(d T,/dx)-'. However, the value of d T,/dx cannot 
be too large. Ta,(x) or T&) are starting temperatures for the PT at decreasing or 
increasing T and their values are determined by the gain of free energy AF = Fp - Fe 
on ordering. In accepted models of the ordering, AF varies smoothly with x. This is 
confirmed also in measurements of hydrogen solubility in the a and p phases (Kuji and 
Oates 1984a, b). Thus both in our calculations and in experiments the values of d T,/dx 
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in NbH,-type hydrides are not large (see figure 1 and Shober and Wenzl (1978)). 
Therefore, at high values of dp/dx, equation (15) can be satisfied only with small values 
of xp - xu,. These thermodynamic considerations appear to explain the mentioned 
stability of the MX structure in NbH,, TaH, and VD, even at very large number of 
vacancies as well as the narrowness over x of the coexistence region a’ + /3 or a’ + 6 in 
these hydrides (Shober and Wenzll978). Therefore, we expect that the sharp increase 
of p ( x )  and dp/dx at x b 0.6 observed in NbH, does also occur in TaH, and VD,. 
Experimental verifications of this prediction seem to be rather interesting. 

The considerations about the connection between the smallness of xp - xu, and large 
values of dp/dx = dh,,/dx are also illustrated in figure 3(c). Here we show the results of 
calculations of T,(x) ,  in which for h F (x) in (13) we use not h,(x) from I1 but smoother 
expressions of the form 

h : ( ~ )  = h , ( ~ )  - A ( x  - 0 . 7 ) * 8 ( ~  - 0.7) (16) 
where 8(x) is zero for x < 0 and unity for x > 0. Comparing figures 3(c) and (a),  we see 
that the decrease of dhF/dx really extends the coexistence region a’ + p, and this 
extension is significant for A 3 5 X lo4 K. 

Let us now compare the model phase diagram in figure 3(a) with the experimental 
one in figure 1. On the whole the simple model used in figure 3(a) satisfactorily describes 
the observed L~-cY’- /~ diagram. There is, however, a qualitative disagreement for large 
x > 0.7: the experimental T,(x) curves show an inflection point here and become almost 
horizontal, while the calculated ones continue to increase with a positive curvature. The 
disagreement may be due to two factors not yet discussed: (i) inapplicability of the 
extrapolation of the function hF(x) = h, (x )  to large x > 0.83, not studied by Kuji and 
Oates (1984a); (ii) a possible concentration dependence of ordering-dependent inter- 
actions, in particular, of the parameters yL = y , ( x ) .  Let us discuss these factors. 

To estimate h F(x)  at large x, we use the data obtained by Kuji and Oates (1984b) on 
pUE(x, T )  in the /3 phase. These authors interpolated their results with the expression 

PE = PEx&, T )  = h(x) + Tg(x) (17) 
with empirical functions h(x) andg(x). However, the assumption of a linear dependence 
of pE on T can hardly be justified for the low temperatures T = 310-410 K studied in 
these experiments, and functions h(x) and g(x) cannot be considered as the partial 
enthalpy and entropy of hydrogen (11). Therefore, we suppose relation (17) to be only 
an empirical interpolation for pE(x, T )  in the limited interval of Tconsidered. In figure 
4 we compare our microscopic expressions (4)-(10) for ,uE in this interval with the 
experimentalp&,(x, T ) .  Wesee thatforx S 0.83 themodelPE = chemicalpotential 
calculated with h,, = h,(x) and y ,  = y :  (curve B in figure 4) agrees satisfactorily with 
pFxp (and it is also true for y,  = y : ) .  Taking into account the extreme simplicity of the 
model, the agreement may be considered as confirmation of the concepts used. At the 
same time, curve E in figure 4, calculated without the p g ( x )  term in (13), disagrees 
sharply with the experiment, which illustrates the importance of the p g ( x )  contribution 
for realistic descriptions of p ( x ,  7‘). 

For larger x > 0.83 the dependence of p Fxp on x (figure 4) has an inflection point and 
deviates from pE. This may be due to one more change in the character of the band 
structure. For example, the calculations of Ho et a1 (1984) for stoichiometric P-NbH 
imply that at x - 0 . 8 4 9  the Fermi level can fall off to a pronounced Van Hove type 
minimum in the electron state density. To estimate hF(x) for x > 0.83, we use the 
pFxp(x, T2) values from (17) at the average experimental temperature T2 = 360 K of 
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Figure 4. Excess chemical potential of hydrogen, pE(x, T )  (equation (U)), in the /3 phase 
of NbH, at different T.  Curve A (dotted) presents pFxp (Kuji and Oates 1984b). Curves B- 
E show pE calculated with different h: from (13) and y g ,  y p  from (8): B, h: = h,, y~ = 

y ! ,  y p  = y i ;  C, model F; D, model G ;  E, yg = y t ,  y p  = y i ,  h t ( x )  = pmf = yax with ye 
from (11). 

Kuji and Oates (1984b). We suppose that for x >  0.9 the difference between 
pExp(x ,  T 2 )  and p F ( x ,  T 2 )  (or p F ( x ,  T 2 )  calculated withhti = h,, y i  = y ! )  is determined 
only by the sought-for hF(x)  function, while betweenx = 0.83 and x = 0.9 it smoothly 
matches the h,(x) function from 11. This yields the following form of h: (in K): 

f 

The accuracy of the resulting description of pUXp(x, T )  (including also the modifications 
of y L ( x ) ,  according to the relations (19) discussed below) is illustrated by curves C and 
D in figure 4 and can be treated as satisfactory. 

It turns out, however, that the modification (17) of hE(x) at large x has little effect 
on the a'-P PT considered. The phase equilibrium curves calculated with hF(x) from 
(18) for all x s 0.9 almost coincide with those shown in figure 3(a).  Thus the correction 
(18) does not eliminate the above disagreement with experiments in the shape of T,(x) 
at large x .  

Let us now discuss the effects of the concentration dependence of the parameters yt 
in (8). Taking into consideration the mentioned manifestations of the band-structure 
effects in NbH,, the presence of such a dependence seems to be quite natural. However, 
in the absence of microscopic calculations, it can be introduced only phenom- 
enologically. Experiments show that characteristic points for the concentration depen- 
dence of H-H interactions in NbH, are x = 0.6 and x = 0.83 (see I1 and figure 4). 
Therefore, we suppose the following model form for y l ( x ) :  

yL(x) = y I  + b,(x - 0.6)2e(x - 0.6) - d,(x - 0.83)2e(x - 0.83). (19) 
Let us note that when yI depends on x ,  additional terms arise in relations (8b)  for pufff in 
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Figure 5.  Dependence of the order parameters in 
the /3 phase of NbH, at x = 0.83 on the reduced 
temperature, T / T p ,  where TBis the transition tem- 
perature to the homogeneous p phase. Experi- 
ments: full circles correspond to the reduced 
tetragonal strain U(T)/U(250 K) with the values 
of U =  U,, - U,,takenfromfigure2.14ofShober 
and Wenzl (1978); open triangles are the values 
of Z'12(T)/Z'~2(250 K), where I ( T )  is the intensity 
of the superstructure reflections estimated from 
figure 7 of Welter and Schondube (1983). 
Notations for theoretical curves are as follows: 
A, E ( T )  taken from model G; B, p(T )  from 
model G; C, E(T)  from model F; D, p(T )  from 
model F. 

accordance with the thermodynamic relation (6b). The correction 8prf is the same for 
all A = a, b ,  a and is 

To illustrate qualitatively the effects of the modifications of the dependence (19) on 
the PT, we present in figure 3 ( d )  Ti@) calculated by using expressions (18)-(20), yi = 
yp at di = 0 and at several values of b, = b, in equation (19). We see that when bi 
increases, i.e. I yil decreases, the PT temperatures Ti(x)( are, naturally, lowered and the 
phase diagrams become similar to the observed one. By varying the bi and di values in 
(18), we can change the details of the Tj(x)  dependences. 

In what follows we shall consider two representative models determined by relations 
(4)-(10) and (18)-(20). The first one corresponds to the values yi = y:, di = 0, b, = 
bf = 5000K, b ,  = b: = 1000 K in (19) and will be called model F (to distinguish it from 
models A-E in 11). Figure 1 shows that the phase diagram in this model is similar to that 
suggested by Shober and Wenzl(l978). The second one, called model G, corresponds 
to the values yi = y !  , b, = b, = 5000 K,  d ,  = d,  = 14000 K. The phase diagram for this 
model in figure 1 at large x resembles that suggested by Welter and Shondube (1983); in 
particular, the point of equal concentrations x,.(T) = xp(T)  is present. For the a(a')  
phase at x < 0.83 both the models coincide with model A from 11. Let us also note that 
total variations Ay of parameters y,(x) in (19) for all values x S 0.9 considered are not 
large: /Ay i /y i l  s 0.2. Therefore, comparison of figures 3(a), 3 ( d )  and 1 illustrates the 
sensitivity of the detailed form of phase diagrams to a relatively weak concentration 
dependence of yi(x) ,  At the same time the main features of the observed phase diagram 
are described even by simple models with concentration-independent yi (figure 3 ( a ) )  
and are determined by the discussed sharp increase of ap/dx = ah,/dx at x 3 0.6. 

4. Characteristics of /3 ordering in NbH, 

In this section we discuss the results of calculations for the main characteristics of the p 
ordering in NbH,. The results are not too sensitive to details of the models and those for 
models F and G defined above will be presented. 

In figure 5 we present the order parameters E(T) and p ( T )  for NbH, at x = 0.83. 
Experimentally, the parameters can be estimated from data on the tetragonal strain U = 
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Figure 6. Calculated jumps of the order par- 
ameters t c ( x )  andp,(x) inNbH, as defined in (21). 
Notations for curves are as follows: A ,  g,(x) taken 
from model G; B, p&) from model G; C, 
from model F; D, p c ( x )  from model F. 

Figure 7. Entropy of the a’-P transition, AS(x) ,  
in NbH,, as defined in ( 2 2 ) .  Experimental points 
are taken from figure 2.16 of Schober and Wenzl 
(1978). Theoretical curves: A, model G; B, 
model F. 

U,, - U,, in the /? phase, since in the linear-in-U approximation, U is proportional to 5 
(V). The quantity p is the amplitude of the cw p (in (2)) with the superstructure vector 
kl,  and the intensity of the superstructure reflections, Z(T) ,  is proportional to p2. 
Therefore, for comparison with the calculations in figure 5 ,  we present the experimental 
values of U( T ) / U (  To) estimated from the data of Pick cited by Shober and Wenzl(l978) 
as well as those of Z1I2( T)/Z’/*( To) estimated from the data of Welter and Schondube 
(1983). Here To = 250 K is the temperature at which U( T )  and I( T )  are close to the 
respective saturation values. It is seen that the calculations agree qualitatively with 
experiments. Let us also note that at T 6 250 K the calculated p ( T )  drops and the cw 
disappears from the ordering. This correlates qualitatively with the experimental fall of 
p( T ) ,  which is shown in figure 5 and is connected with the PT to another phase. 

In figure 6 we show the calculated jumps of the order parameters for the a’-/? PT, 
i.e. the values of = gc(x) and p = pc(x) on the phase equilibrium curve Tp = Tp(x) :  

5c(x> = E(x, T )  P C ( X >  = P ( X 9  T ) .  (21) 
Each curve in figure 6 starts from the value x = xp( T,) corresponding to the calculated 
triple point temperature TI .  In figure 7 values of the transition entropy AS(x)  are 
presented: 

. W x )  = S a ’ ( X ,  T&)) - Sp(& Tp(X)) .  (22) 

A prominent feature of the concentration dependences Ec(x), pc (x )  and AS(x)  in 
figures 6 and 7 is a sharp step-like rise of the parameters at some x in model F (and also 
in other models with not large I yil 6 1 yy I). Generally, an increase of the order parameters 
with x for a given T i s  due to the rise of the ordering energy with x ,  e.g. in ( s a ) ,  as 
compared with the counter-acting entropic terms, e.g. in (7). An increase of T’(x) with 
x can prevent this rise and this is the case for the initial parts of the curves in figure 6 .  
However, when Tp(x)  becomes almost horizontal and initial values of &, pc and AS are 
not large, they grow very sharply at a certain x. In model G (and others with large jyil 3 
1 y f  I) values of gc, pc are large and close to saturation even near xp(T t ) .  Thus their rise 
with x is much smoother and the step-like behaviour is not pronounced. 

The comparison with the experimental A S ( x )  in figure 7 shows that AS(x)  values 
calculated in model G agree with the data much better than those in model F: only a 
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Figure 8. Instability temperature, Tc(x) or T,,(x), 
of the disordered (Y phase in NbH, with respect to 
creation of the E or p CW. Experiments: open 
circles denote TE(x)  estimated as described by 
Vaks et a1 (1988a) from the data of Mazzolai and 
Birnbaum (1985) on the elastic constants. Theor- 
etical curves: A, TE(x) taken from model G; B,  
TJx)  from model G; C, T,(x) from model F; D, 
T J x )  from model F. 

slight break is seen in the data instead of the step-like behaviour. On the other hand, 
model F is better at describing the phase diagram in figure 1. Therefore, the models used 
cannot simultaneously describe details of the concentration dependences for both the 
phase equilibrium curves Ti(x) and AS(x). This is, of course, quite possible for such 
simplified models. For example, the presence in the /3 phase of the dispersionless 
phonon-like excitations reported by Shapiro et a1 (1981) and neglected in our models 
may have some effect on AS(x). Thus direct measurements of order parameters E c ( x ) ,  
p,(x) as well as more thorough investigations of AS(x), S,(x,  T )  and Sp(x, T )  in NbH, 
(in particular, at not large x < 0.75) appear to be desirable. 

In figure 8 we present the ‘ordering spinodals’ (De Fontaine 1979), i.e. the tem- 
peratures T&) or T J x )  at which the disordered aphase becomes unstable with respect 
to the creation of the 5 or p cw of an arbitrarily small amplitude (V). The experimental 
T?P(x) values are also shown, which were estimated in V from the data of Mazzolai and 
Birnbaum (1985) on the anomalies of the elastic constants C,(T, x) in the a phase of 
NbH, near temperatures of the PT to the B phase. A comparison with figure 3 in V shows 
that Ts(x) values in models F and G agree with TpP(x) better than those in model A in 
V, and at not small x b 0.7 Ts and TpP are close. At  smaller x the agreement worsens 
but experimental errors in T?P(x) become much larger here. Figure 8 also shows that 
values of T J x )  are lower than T&x) and are significantly spaced apart from the PT 
temperatures TLyI(x). This agrees qualitatively with the lack of evidence for pretransition 
phenomena connected with the cw p in the a’ phase of NbH, (Welter and Schondube 
1983) while the mentioned anomalies in C&, T )  connected with the cw E (V) are rather 
pronounced (Mazzolai and Birnbaum 1985). 

Since all the main properties of Nb(H,D),, Ta(H,D), and VD, in the a phase are 
similar in experiments (Shober and Wenzl 1978, Somenkov and Shilstein 1980) as well 
as in models (11, Futran et a1 1982), it is natural to suppose that near the a 4  PT in TaH, 
and VD, the lj cw is also much softer than the p cw. Then the sharp rise of the specific 
heat observed by Voronel et aZ(1968) near the a 4  PT in VDo,8 should be due to the 
fluctuation effects connected with the cw. Therefore, we expect that the effects of 
the pretransitional softening and relaxation in the shear constant C‘ = h(Cll - CI2) 
discussed in V (but not in the constant C44 and bulk modulus B )  should be still sharper 
and more pronounced in VD, than those seen by Mazzolai and Birnbaum (1985) in 
NbH,. Experimental verification of this prediction would be an important test for the 
discussed concepts on hydrogen ordering in hydrides. 

5. Conclusions 

Let us summarise the main results of this work. First, this and the preceding work 
(11, VI) illustrate the scope for and limitations of conventional models with pairwise 
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interactions in describing real interstitial alloys. As is noted in I1 and above at not large 
concentrations x s 0.5, models with pairwise concentration-independent VHH = V,, + 
V,, + V, describe the thermodynamics and a-&’ PT in NbH, fairly well. However at 
x 2 0.6 sharp concentration dependences of properties are manifested, which appear to 
be due to significant changes of the electronic state of hydrogen in NbH,. Even qualitative 
features of the observed phase diagrams cannot be understood without allowance for 
these effects. It is natural to expect that these non-pairwise band-structure effects 
are also characteristic of other interstitial alloys. As has been mentioned, one of the 
indications of that may be the stability of many ordered interstitial metal-non-metal 
alloys even at large deviations from stoichiometry (Goldschmidt 1967). Our con- 
sideration shows, however, that even phenomenological allowance for these effects can 
be sufficient for understanding the main features of the PT and phase diagrams. In I1 and 
in this work it was done by using the estimates of the configuration- and temperature- 
independent contributions h,,(x) to the chemical potential of hydrogen from the exper- 
imental data on its solubility in NbH,(Kuji and Oates 1984a, b). It is also shown in I1 
and in this work that in the configuration-dependent contributions to thermodynamic 
potentials the non-pairwise concentration-dependent effects are apparently not large. 

Treating the mean-field constants y E  and yp in (8) as free parameters of the model 
(i.e. using them for simulating disregarded effects), we have described the main features 
of the a-a’-p phase diagram in NbH, (see figure 3(a ) ) .  The fitted values of y E  are close 
to that calculated in the model estimate (11) while the value of 1 y,l in the model estimate 
appears to be underestimated. The addition of relatively small concentration-dependent 
terms to y E  and y p ,  according to (19) (with the same type of x dependence as that 
estimated from the experiments for ht,(x)), enables us also to explain the peculiar form 
of the phase equilibrium curves Tag(x)  and Tp(x)  in NbH, at large x 2 0.75 (figure 
1). We calculated the chemical potential in the phase (figure 4), the temperature 
dependences of the order parameters (figure 5 ) ,  the transition entropy in model G (figure 
7) and the ordering spinodal T ( x )  for the cw (figure 8) and revealed fair agreement with 
the experiments. 

The results obtained enable us to make a number of qualitative predictions about 
properties of hydrides under consideration. We suppose that the stability of the 6 phase 
in TaH, and VD, in a very broad range of x has the same ‘electronic’ origin as that for 
the p phase of NbH,. Then the concentration anomalies in the a phase at x b x, = 0.6 
discussed in I1 for NbH, are also expected for TaH, and VD,, such as the sharp rise of 
the chemical potentials p and dp/dx, the maxima in the electrical resistivity p(x)  near 
x,, anomalies in the thermo-power at x - xs, etc. We predict the pretransitional softening 
of the shear constant C’(x, T )  in the a phase of TaH, and VD, which should still be 
sharper in VD, than that observed in NbH,. The ‘step-like’ dependences for the order 
parameters gc(x) and pc(x) on the curve T ( x )  (of the type shown by curves C and D in 
figure 6) are also possible. The predictions seem to be insensitive to the details of 
the models, being connected mainly with the general concepts on the PT considered. 
Therefore their experimental verification seems to be interesting and useful for the 
development of microscopic theories of hydrides as well as other interstitial alloys. 
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